Analysis of a QR Algorithm for Computing Singular Values

نویسندگان

  • S. Chandrasekaran
  • Ilse C. F. Ipsen
چکیده

We extend the Golub-Kahan algorithm for computing the singular value decomposition of bidiagonal matrices to triangular matrices R. Our algorithm avoids the explicit formation of R T R or RRT. We derive a relation between left and right singular vectors of triangular matrices and use it to prove monotonic convergence of singular values and singular vectors. The convergence rate for singular values equals the square of the convergence rate for singular vectors. The convergence behaviour explains the occurrence of deflation in the interior of the matrix. We analyse the relationship between our algorithm and rank-revealing QR and URV decomposi-tions. As a consequence, we obtain an algorithm for computing the URV decomposition, as well as a divide-and-conquer algorithm that computes singular values of dense matrices and may be beneficial on a parallel architecture. Our perturbation result for the smallest singular values of a triangular matrix is stronger than the traditional results because it guarantees high relative accuracy in the smallest singular values after an off-diagonal block of the matrix has been set to zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A QR-method for computing the singular values via semiseparable matrices

A QR–method for computing the singular values via semiseparable matrices. Abstract The standard procedure to compute the singular value decomposition of a dense matrix, first reduces it into a bidiagonal one by means of orthogonal transformations. Once the bidiagonal matrix has been computed, the QR–method is applied to reduce the latter matrix into a diagonal one. In this paper we propose a ne...

متن کامل

An Eecient and Accurate Parallel Algorithm for the Singular Value Problem of Bidiagonal Matrices ?

In this paper we propose an algorithm based on Laguerre's iteration, rank two divide-and-conquer technique and a hybrid strategy for computing singular values of bidiagonal matrices. The algorithm is fully parallel in nature and evaluates singular values to tiny relative error if necessary. It is competitive with QR algorithm in serial mode in speed and advantageous in computing partial singula...

متن کامل

An E cient and Accurate Parallel Algorithm for theSingular Value Problem

In this paper we propose an algorithm based on Laguerre's iteration, rank two divide-and-conquer technique and a hybrid strategy for computing singular values of bidiagonal matrices. The algorithm is fully parallel in nature and evaluates singular values to tiny relative error if necessary. It is competitive with QR algorithm in serial mode in speed and advantageous in computing partial singula...

متن کامل

QR factorization with complete pivoting and accurate computation of the SVD

A new algorithm of Demmel et al. for computing the singular value decomposition (SVD) to high relative accuracy begins by computing a rank-revealing decomposition (RRD). Demmel et al. analyse the use of Gaussian elimination with complete pivoting (GECP) for computing the RRD. We investigate the use of QR factorization with complete pivoting (that is, column pivoting together with row sorting or...

متن کامل

A Fast Algorithm for Computing Pseudospectra of Companion Matrices

The concept of pseudospectra was introduced by Trefethen during the 1990s and became a popular tool to explain the behavior of non-normal matrices. It is well known that the zeros of a polynomial are equal to the eigenvalues of the associated companion matrix. It is feasible to do the sensitivity analysis of the zeros of polynomials by the tool of pseudospectra of companion matrices. Thus, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1995